
2008년도 대한기계학회 추계학술대회 논문집

An implementation of CSG modeling technique on Machining Simulation

using C++ and Open GL

Duy Lea, Su-Jin Kima, Jong-Min Leea, Anh-Thi Nguyenb,Vy-Thoai Hab
aSchool of Mechanical and Aerospace Engineering, Gyeongsang National University

900 Gajwa, Jinju, Gyeongnam, 660-701, South Korea

duyle2003@gmail.com, sujinkim@gnu.ac.kr, ljm30422@yahoo.co.kr

bDepartment of Aeronautical Engineering, University of Technologies

268 Ly Thuong Kiet st., dst. 10, Ho Chi Minh City

thinguyen@hcmut.edu.vn, havythoai@yahoo.com

Abstract

An application of CSG (Constructive Solid Geometry) modeling technique in Machining Simulation is introduced in
this paper. The current CSG model is based on z-buffer CSG Rendering Algorithm. In order to build a CSG model,
frame buffers of VGA (Video Graphic Accelerator) should be used in term of color buffer, depth buffer, and stencil
buffer. In addition to using CSG model in machine simulation Stock and Cutter Swept Surface (CSS) should be
solid. Method to create a solid Cuboid stock and Ball-end mill CSS are included in the present paper. Boolean
operations are used to produce the after-cut part, especially the Difference operation between Stock and CSS as the
cutter remove materials form stock. Finally, a small program called MaSim which simulates one simple cut using
this method was created.

Keywords: CSG model, Frame buffer, Z-buffer, Machining Simulation, Boolean Operations

1. Introduction
Computer Numerically Control (CNC) machining is

a widely used manufacturing process. The simulation
of CNC machining is an important component of
CAM, it can check errors and enhance the automation
of machining process. Almost all the commercial
CAD/CAM software, comprises machining simulation
functions. Machining simulation falls in two aspects,
physical process simulation and geometric process
simulation. The former discusses metal cutting,
MRR(metal removal rate) and cutting force, etc. The
latter concerns the geometry modeling of machining
process, for example, curve modeling for cutter edges,
surface modeling for the rake face, and solid modeling
for removal material. Geometry modeling is used
widely in 3D machining simulation, and there are a
number of algorithms in the previous papers.
GWB(Geometry workbench)[1], Z-Map[2], Modified
octree algorithm[3], SDE(Sweep Differential
Equation)/SEDE (Sweep Envelope Differential
Equation)[4], B-rep algorithm[5], Volumetric
Model[6]. These algorithms are almost used for
milling machining simulation, especially for cutter
path simulation. The basic method of these algorithms

is boolean operator of CSG. But CSG is a common
method for geometry modeling, so we can build
geometry modeling using CSG method to simulate the
cutting process, and show the machined surface of
mold.

Using the CSG modeling technique combined with
the z-buffer CSG rendering algorithm[10], we present
our method to simulate the cutting process in C++ and
OpenGL.

2. Constructive Solid Geometry

Constructive Solid Geometry (CSG) is a technique
for geometric modeling. CSG allows a modeler to
create a complex object by using Boolean operations
to combine object form simple shape as cuboids,
cylinders, spheres, cones, prisms, pyramids. The

Boolean operations in CSG are Union (),

2008년도 대한기계학회 추계학술대회 논문집

Intersection (), and Difference (-). Figure 1 clarifies

a basic CSG Object tree.
CSG model has great advantages for some fields.

One such field, which is the main motivation for our
work, is Machining Simulation. Milling process is
mentioned when material is removed from a cuboid
stock. A machine tool in this kind of process is present
in Fig. 2.

For each milling operation, the volume swept by the
cutter can be represented into triangles. This boundary
surface is checked with volume of the stock in order to
display the after-cut object.

Fig. 1. A CSG tree

3. Frame buffer and difference operation
3.1 Frame buffer

There are four buffers in frame buffer but for the
purpose of this paper we just present three buffers.
Color buffer store color of each pixel of a frame. This
buffer is what you see. Depth buffer store depth
information for each pixel of a frame. It’s also call Z-
buffer. The last, stencil buffer used to create mask for
restricting drawing area. This buffer store value
associated to each pixel. Typically, we begin to draw a
shape and tell to set 1 where pixels (of this shape) are
drawn. Then, we make read only this buffer and tell
we only want to draw where value is 1. Following
objects will only be drawn in the corresponding region
of ‘1’. The use of the stencil buffer is the main solved
problem in the difference operation in the paper.

3.2 Difference operation
Draw a back face of CSS into depth buffer when

enabling the depth test and disabling the color buffer
update (step1). Use stencil plane to find part of CSS in
Stock and draw it into depth buffer (step2). Use stencil
plane to find part of Stock in CSS and draw it into
depth buffer (step3). Disable stencil test for reset and
enable depth test for 3D final view (step4). Finally

view the toolpath. Table 1. shows the code of this
operation.

4. Machining simulation
4.1 Stock and cutter

Basic cuboid stock is created through Open GL
environment by using glBegin (GL_QUADS).

A solid cutter model is created by three parts. The
first - the bottom of the cutter - which is spherical
shape, is drawn by dividing a sphere (30 slices, 20
stacks) to take a half (using glClipPlane).
GLdouble eqn[4] = {0.0, 0.0, -1.0, 0.0};
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
glClipPlane (GL_CLIP_PLANE0, eqn);
glEnable (GL_CLIP_PLANE0);
gltDrawSphere(5.0f, 30, 20);
glDisable (GL_CLIP_PLANE0);

The others are body and top of the cutter. Both are
cylindrical shape which can be built by two single
cylinder with the same 30 slices and 1 stack. After that
they need to be rearranged in the same coordinate to
form a complete ball-end mill.

Fig. 2. Ball-end mill

4.2 Cutting swept surface
CSS is a surface that is created when cutter move

over and cut the stock. An approximate surface with
CSS is created by set of triangles. During cutting
process the cutter bottom surface always contact with
the stock. This contact area creates grazing curve (or
Silhouette curve in [5]). For the simplest case grazing
curve is chosen a half-circle.

Fig. 3. CSS created by nodes on grazing curve

Next is the method to create a CSS of a Ball-end
mill using global coordinates (stock’s coordinates).

2008년도 대한기계학회 추계학술대회 논문집

Fig. 4. Position and direction of grazing curve

(C) is toolpath. T, N is tangent and normal vector of
(C). B is T cross N. So T, N, B is local coordinates of
every single point on (C). Then (C) is divided into
points and grazing curves are created in each point.
Finally all curves are connected together form the CSS.
But in order to using the CSG model it should be solid.
So it’s made solid by changing grazing curve to a full
circle.

Fig. 5. Solid Swept Surface

4.3 Simulation result

Fig. 6. Masim program

Table 1. Code applied for difference operation

glEnable(GL_DEPTH_TEST);
glColorMask(GL_FALSE, GL_FALSE, GL_FALSE,
GL_FALSE);
glCullFace(GL_FRONT);
RenderSweptSurface();

glDepthMask(GL_FALSE);
glEnable(GL_STENCIL_TEST);
glStencilFunc(GL_ALWAYS, 0, 0);
glStencilOp(GL_KEEP, GL_KEEP, GL_INCR);
glCullFace(GL_BACK);
RenderStock();
glStencilOp(GL_KEEP, GL_KEEP, GL_DECR);
glCullFace(GL_FRONT);
RenderStock();

glDepthMask(GL_TRUE);
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE,
GL_TRUE);
glStencilFunc(GL_NOTEQUAL, 0, 1);

glDisable(GL_DEPTH_TEST);
glCullFace(GL_FRONT);
RenderSweptSurface();

glColorMask(GL_FALSE, GL_FALSE, GL_FALSE,
GL_FALSE);
glEnable(GL_DEPTH_TEST);
glDisable(GL_STENCIL_TEST);
glDepthFunc(GL_ALWAYS);
RenderStock();
glDepthFunc(GL_LESS);

glCullFace(GL_BACK);
RenderStock();

glDepthMask(GL_FALSE);
glEnable(GL_STENCIL_TEST);
glStencilFunc(GL_ALWAYS, 0, 0);
glStencilOp(GL_KEEP, GL_KEEP, GL_INCR);
glCullFace(GL_BACK);
RenderSweptSurface();

glStencilOp(GL_KEEP, GL_KEEP, GL_DECR);
glCullFace(GL_FRONT);
RenderSweptSurface();

glDepthMask(GL_TRUE);
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE,
GL_TRUE);

glStencilFunc(GL_EQUAL, 0, 1);
glDisable(GL_DEPTH_TEST);
glCullFace(GL_BACK);
RenderStock();

glDisable(GL_STENCIL_TEST);
glEnable(GL_DEPTH_TEST);

5. Conclusion
Through the work of present paper we implement

the CSG modeling technique via OpenGL and get the
acceptable result. Compare to another method such as
z-map it runs with a higher speed but costs less
memory space. It’s worth to predict and test
manufacturing process by using CSG model.

References
[1] Hazim A. EI-Mounayri. Generic Solid Modeling

Based Machining Process Simulation
[Dissertation].Hamilton: McMaster University,
1997.

[2] Seung Ryol MAENG Nakhoon BAEK. A Fast
NC Simulation Method for Circularly Moving
Tools in the Z-Map Environment. Proceedings of
the Geometric Modeling and Processing 2004
(GMP’04).

[3] Trung Thanh Pham,Yong Hyun Kim, Sung Lim
Ko. Development of a Software for Effective
Cutting Simulation using Advanced Octree
Algorithm. Fifth International Conference on
Computational Science and Applications.2007,
pp.324-332

Step1

Step2

Step3

Step4

2008년도 대한기계학회 추계학술대회 논문집

[4] Liping Wang. Modeling of 3D Swept Volumes
Using SDE/SEDE Methods And its Application
To Five-axis NC Machining [Dissertation].
Newark: New Jersey Institute of technology,1997.

[5] R.V. Fleisig, A.D. Spence. Techniques for
accelerating B-rep based parallel machining
simulation. Computer-Aided Design 37 (2005)
1229–1240.

[6] J. Zhang, S.K. Ong, A.Y.C. Nee. A Volumetric
Model-Based CNC Simulation and Monitoring
System in Augmented Environments. Proceedings
of the 2006 International Conference on
Cyberworlds (CW'06).

[7] Richard S. Wright, Benjamin LipChak. Nicolas
Heamel, OpenGL Super bible or “The Blue
Book”, Third and Fourth Edition, SAMS and
Addition – Wesley Publisher.

[8] Jackie Neider, Tom Davis, Mason Woo, OpenGL
Programming Guide or “The Red Book”,
Addition – Wesley Publisher.

[9] Tom McReynolds, David Blythe, Advanced
Graphics Programming Using OpenGL, Morgan
Kaufmann Publisher.

[10] J. Goldfeather, J. Hultquist, H. Fuchs, “Fast
Constructive Solid Geometry in the Pixel-Powers
Graphics System”, Computer Graphics (Proc.
Siggraph), Vol. 20, No. 4, Aug. 1986, pp.107-116.

[11] Chung, Park, Choi, 1998, Modeling the surface
swept by a generalized cutter for NC verification.

